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Abstract. We present models involving an anti-Hermitian scalar field 4, endowed with a 
symmetry breaking potential. Like the Skyrme model, these are invariant under the global 
unitary transformation 4 + A4A- l  and have topologically stable localized solutions. Unlike 
the Skyrme model, these are defined on every W,, and a subclass of these models possess 
minimal action explicit solutions With winding number n. 

1. Introduction 

The Skyrme model [l] is a nonlinear field theory of pions, which has been employed 
as an effective field theory to describe QCD at low energy [2]. 

In the static limit, it has topologically stable finite energy solutions in R,. These 
are treated as the solitons of the (3+1)-dimensional theory, and in the standard 
treatment [2] quantization is carried out about this classical background using the 
method of collective coordinates. It turns out that this skyrmion can be quantized as 
a fermion. Physically, this is the most important feature of Skyrme theory, and can be 
ascribed most simply to its invariance, under the global transformation 

U + AUA-' (1) 

of the Skyrme field U = exp i r  U. 

Invariance under (1) is an essential property of the Skyrme model, and in what 
follows it will be satisfied by the new models we propose. These models differ from 
the Skyrme model in two qualitative ways. The first is that they are described by 
Hermitian (or antihermitian) fields '3 which in the static limit are subject to the 
asymptotic condition 

at spatial infinity, by virtue of the presence of a symmetry breaking potential. The 
second is that unlike the (static) Skyrme model, which is defined only on R,, these 
new models form a hierarchy which can be defined on every R.. This last feature is 
not physically relevant, but is interesting for its own sake. 

Before we give the construction of the new models in section 3, we re-examine the 
Skyrme model from a view point that is particularly pertinent to its comparison with 
the former in section 2. After that we cnnstruct the models and proceed to present 
their soliton solutions in section 4. 
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2. The Skyrme model 

Our approach here is indirect, in that we first construct O ( d  + 1) sigma models in d 
dimensions, and then note that the O(4) model in three dimensions is the Skyrme model. 

The O ( d + l )  sigma models in d dimensions are defined, following [3], in terms 
of the order parameter field n"(x), (Y = 1, .  . . , d + 1, depending on the Wd coordinate 
x;, i = 1, .  . . , d, and ny satisfy the constraint 

n-nu  = 1. (3) 
In terms of the totally antisymmetric tensor fields 

&p =accnrrl . . , ain,ne" (4) 

one can write down the following inequality 

ddx[K~"-"lE. ,I.. . ,d . . ,...," F, ,... j .  - E ,  ,... , ~ , , , ~ ~ , n a - + ~ ~ ? ~ ~ . : p - ~ 2 ~ o  ,,...cm ( 5 )  

where ti is a constant with the dimensions of an inverse length to the (m -n)th power, 
and where m 2 n with m + n = d. 

As a result of (5) we have the topological inequality 

with 

y "."? = m! K*(m-n) (~~: :1R. )2+n! (~1 : : i , - )2 .  (7) 

For field configurations with the appropriate (instantonic) asymptotic properties 
[3,4], the right-hand-side of (6) becomes a winding number, which gives a lower bound 
on the positive-definite action on the left of (6). Thus the Euler-Lagrange equations 
of the system defined by the density (7) can have non-trivial and topologically stable 
(instanton) solutions. 

These solutions are in general non-minimal, in the sense that they do not saturate 
the inequality (6). In the special case, however, when d = 2p is even, one can choose 
m = n as a consequence of which the dimensional constant ti does not feature in (7). 
and Yn,. in d ( = 2 n )  dimensions is conformally invariant. This case was studied in 
detail in [3], and minimal action (self-dual) instanton solutions were found. 

These instanton field configurations [31 
2 2  

, ,d+ l -__  x -a  2ax'a n" =- 
x2+a2 x 2 + a 2  

- 

depend on an arbitrary scale parameter a, and hence are not localized as solitons. For 
this reason we exclude these special cases from our consideration. 

Excluding m = n, therefore, all systems yn,,,, given by (7) have topologically stable 
localized soliton solutions, localized to the scale of the dimensional parameter K .  On 
this purely classical level, they can he interpreted as Skyrme-like models on 

As was noted above, all these Skyrme-like models have only non-minimal solutions. 
This can be seen simply by verifying that the first-order (anti-)self-duality equations, 
that render the inequality ( 5 )  into an equality, have no spherically symmetric solutions. 
This is a consequence of the presence of ti, the scale breaking constant in (7). Indeed 
the relevant (anti-)self-duality equations can be solved on Y"+", rather than W,,,, 
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since the dimensional constant K - '  can then be identified with the (constant) radius 
of 9"+" and this disappears from the (anti-)self-duality equation. In the case of the 
Skyrme model on Y3(n = 1,  m = 2), those aspects have been thoroughly discussed in 
[5,61. It would in fact he expected that this situation will hold on any compact 
symmetric coset space, and not just spheres. This is completely analogous to finite 
action solitons of the generalized Yang-Mills (GYM) systems 171, on even-dimensional 
manifolds. There too only on R,,, when the action is conformally invariant, it is that 
the (anti-)self-dual solutions exist [PI,  and not on R4p+2. By contrast (anti-)self-dual 
solutions exist, and we explicitly found them 19, 101, not only on  S4' and CP2p hut 
also on SdPt2 and WZp+'.  

On the quantum level, however, because the O(n +m+ 1) sigma models are devoid 
of any invariance under a transformation like ( l ) ,  they are not interesting as candidates 
for Skyrme-like models. 

The unique exception is the ( n  = 1, m = 2) case, namely the O(4) sigma model on 
W,, which turns out to be (classically) equivalent to the Skyrme model. In this case 
only, the order parameter field n" can be used to parametrize the Skyrme field 

U = n,,u,, . I - '=Ut= .& e c ,  (9a, b )  

with U- = (1, iuc), 6- = (1,  -iu,) in terms of the Puali matrices U,. The three independent 
components of n" parametrize the isotriplet pion field d. With ( 9 4  b), the (classical) 
equivalence of the (static) Skyrme Lagrange density 

(10) 

U, = U-'J,U uo =[U,. U,] (1% b )  

with the density Y,,> of (7), namely that z0- 9,,2, is easy to verify. 
We have highlighted the uniqueness of the Skyrme model, or the O(4) sigma model, 

on R,, with a view to contrasting this aspect with the situation for the new models to 
be introduced below. For those, the dimensionality of the space does not occupy a 
special role. 

We complete our discussion of the Skyrme model by pointing out that Y,,2 in (10) 
can be further augmented by a sextic term, as in 16,111 

2 2 0 = ~ 2  tr u:+tr U,, 

9;,2 = A' tr ufk (1 1) 

u,*={u, ,  u,d+cyCKi,.i, k) ( ] l a )  

with the parameter A of the dimensions of length. The addition of YP;,2 to 91,2 does 
not invalidate the topological inequality (6 ) ,  even though the latter does not follow 
from ( 5 )  any more. In our new models, qualitatively similar terms will feature. 

Perhaps the greatest difference between our models and the O(d + 1) sigma models 
will be the expression for the topological charge. Unlike the right-hand side of ( 6 )  for 
the sigma models, these will be expressed as surface integrals, by virtue of the symmetry 
breaking mechanism. 

3. Construction of models 

The systematic approach essentially involves the statement of vinal theorems employed 
in the case [12] of YM-Higgs (YMH) and GYMH systems [13] on W,. 
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Using the property d,0‘“ = 0 of the gauge-invariant stress tensor e ” ,  one arrives 
at the identiy [12] 

0: ddx = 0. J 
The models we will propose below are subsystems of the GYMH systems, obtained 

by setting the curvature field F=O.  These can be arrived at without reference to the 
GYM systems, but the present approach is more instructive. Indeed with a view to 
incorporating fermions eventually, the GYMH approach is indispensible for the 
definition of the corresponding index theorems. 

Now the GYMH systems in question can be regarded as ^:he residual systems on 
Rd x K,  with K a coset space, after integrating out the dependence of the action on 
the coordinates of K, that is, after performing coset-space dimensional reduction 
[14,15]. 

Denoting the components of the curvature FMN = (F,”, F+,F,.) on Rd x K ,  with 
x, E R, and x, E K ,  we can summarize the result of the dimensional reduction by 
noting the dependence of FMN on x,: 

( i j a j  rr r n. z+++” = r,,” w 1 

Here we have ignored the dependence of FMN on x,, and F,. is the curvature of the 
connection A, on Rd, interacting, minimally, with the Higgs field ‘3, endowed with a 
symmetry breaking term coming from (13c). r, and r,, = -$[r,,,,rn] are r-matrices. 

Starting with the GYM system 

F(2p)= F A . .  . A  9 p-times (14a) 

the dependence of the residual action A, on (A,,, @) can be symbolically recorded as 

A R =  IIF’112+/IFP-1D~112+.. .+IISp~2D@2+SP-’F112+I(Sp-1D~112+IISpl12 (15) 

where non-trivial models can arise only for p a  2. Note that every term in (15) has the 
same dimension, and that in all products and powers of fields, all possible permutations 
and antisymmetrization of all vector indices is implied. 

Substituting the action density in (15), into the identity (12) we have the vinal 
theorem, similarly expressed 

( d  -4p) )I F”/I2+ (d -4p + 2) 11 FP-’D@1I2 + ( d  -4)Il Sp-2+ DQ2+ S’-’FII + . . . 
+ ( d  - 2)11 S’-’D@1/2+ ( d  - O)llSp/12 = 0. (16) 

For p =  1, (16) is familiar [12] and states that finite action YMH field configurations, 
in d = 4 can only have constant Higgs field 0 = q,  in d = 3,2 musi have nontrivial @ 
and A,,, and in d = 1 only @ (and no  curvature.) For p = 2, (16) was used to study 
G Y M H  field configurations in [13,16]. 
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Here we are interested in models devoid of gauge fields, defined exclusively in 
terms of the scalar field @. We note that, for F=O,  all terms in (16) ,  down to and 
excluding the one with coefficient ( d  - 2 p ) ,  vanish. It is therefore impossible to find 
finite action field configurations with F = 0 for d 2 2 p  - 1. For example for p = 1 ,  2 ,  3, 
equation (16) with F =  0 reads as 

1 1 7 " )  
\""I 

I r l _ 7 > 1 1 x T 1 1 2 +  A l l  Cl12 -0  

( d  -4)Il J@'(I2+ ( d  - 2)I(SJ@112+ d llS2/12 = 0 
\U - " l I I ~= l l  " 1 1 ~ 1 1  - U  

(17b)  

( d  -6)((a@'112+ ( d  - 4)11SJ@'ll'+ ( d  - 2)11S2J@112+ dllS3(I2 = 0. ( 1 7 ~ )  

Whenever each term in (17a. b, c )  is positive, finite action field configurations are not 
viable, that is, when in ( a )  d > 1, in ( b )  d > 3  and in (c) d > 5 .  In these particular 
examples, the viable models respectively for (a) in d = 1, for ( b )  in d = 1,2,3 and for 
( c )  in d = 1,. . . , 5 are 

Za=#3+S2 (18a)  

Zb = @;+ (S@;+@iS)2+S4 (186)  

(!XC) 

@; =ai@ (19a)  

= [ @ ; , m j ]  (19b)  

@oh ={@i,@lk}+cycl ijk (19c) 

=@;;+(s@, +@+QJj +@,S)2d +(S2@;+  S@S+@$)+S6  

with 

The hierarchy of models promised can be illustrated, by its first three members, by 
the Lagrange densities (18a-c) .  Furthermore, the precise form of each can be altered 
subject to (i) that (18a-c)  is bounded from helow by a topological charge density, i.e. 
a total divergence, and (ii) that the potential terms S2" =(v2+Q2)ln he altered only 
such that the replacement of V = S 2 "  is also a symmetry breaking potential, e.g. 
v = ( ? ' + Q ' ) ~ - ,  m f n ,  or v = ( i + c o s @ ) ,  etc, wiih tr@'+-v' asympioiicaiiy, io 
ensure topological stability in the former case. 

Subject to these two restrictions (i) and (ii), (18a-c)  can be arbitrarily altered. To 
illustrate the important restriction (i), we list the topological inqualities pertaining to 
each case (18a-e) .  

In dimensions d = 1, 2, it was found in [17] that non-trivial field configurations 
occur only for scalar valued @. Here we are primarily concerned with analogues of 
the Skyrme model, and hence consider only non-Abelian @ in d > 2. 

_. 

In d = 3, the inequality 

t r [@c-fqk(S@k$.@kS)]2~ 0 (20) 

tr[@;.+(S@, + @ k S ) 2 ] ~ & k  trS@, (20') 

leads to 

which supplies Zb, with or iwhtout a potential term V =  S4, in (186)  with a topological 
lower bound. Again in d = 3, the inequalities 

tr 0.. '1X --.eVkS' 3! 20 (21) 

(22) 
[ l r  

tr[(S@q+@P,iS@j]+@,S) -f&pk(S2@k +s@hs+@ks2)]2a 0 
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lead to 

2 
tr[@2,,+S6]z - e D k  3!  trS3Qyk (21') 

tr[(S@,+@,iS@jl+@,S)2+ (S2Ok + S @ ~ S + @ ~ ~ ' ) ]  

3 ztx tr[t(S@,S2@k+ s*@,s@,) + f ~ ~ @ , *  + s@s@;s@,~. (22') 
The left-hand sides of (21'). and (22') with or without an additional potential term 

V =  V ( S ) ,  can respectively be identified with the action densities of two distinct new 
models in R, . 

The inequalities (21') and (22') can also be used to express a topological lower 
bound on the action density 2< given by ( lSc ) ,  when d = 3. 

In d = 4, the inequalities 

(23) 
1 

3! 
tr @,k -- E U k , ( S 2 Q , +  S@,S+@$) 

lead to 

tr[@&+ (S2Qj + s@,s+@.s*)'] > 2zilkl t i  s@,@j@ps@j (23') 

~I [S@~@[$D~]  + @yjs]2 2 EUkj tr S@i@j@k@l (24') 

Again, the left-hand sides of (23') and (24') can (with or without an additional 
potential V =  V(S)) be identified with two distinct action densities in R,. Again, (23') 
and (24') supply the topological lower bound on -Yc in (18c). 

In d = 5, the inequality 

l2 (25) tr @,j~-- - ,k lm(S@lm+@LIS@ml+QI,S)  a 0  
1 [ 3! 

leads to 

tr[@;'k+ (s@, +@[;s@j]+@,s)2] 3 2Eqklm tr s@j@j@k@!@m.  (25') 

Yet again, the left-hand side of (25') can be identified with the action density, bounded 
from below, for a new model on R5, and (25') can be used to establish the topological 
lower bound of Lfc in (18c). 

It is clear this process can be continued indefinitely, giving rise to models like 
( ]Sa-c)  defined in all Rd. All these systems are guaranteed to have classical solutions 
with finite actions, by virtue of the fact that their actions are all bounded from below 
by topological charges, which are the integrals of densities like those occurring on the 
right-hand sides of (20')-(25'). That these latter are nontrivial topological charges 
follows from the fact that each of the densities (20')-(25') are total divergences by 
virtue oi the symmetry-breaking stipuiation on 3 made above, and from our iequireiiieiii 
of the asymptotic condition (2). 

Like the Skyrmion in R,, these new field configurations in Rd are also localized to 
an absolute scale, in this case 7 occurring in S. 

Fianlly, we note that the 'energy' of these new solitons in Rd is unchanged under 
the global transformations 

@ + A@A-' ( 2 6 )  
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as in the Skyrmion case ( 1 ) .  This last property will decide the quantum properties of 
the new models, and in the d = 3  examples, the new models can apparently play the 
same r6le [21 as the Skyrme model does in low-energy QCD. 

4. Solutions 

Field configurations satisfying the Euler-Lagrange equations of our new models, e.g. 
(18a-c) and their special cases given by (20’)-(25’), are in general non-minimal. They 
do not satisfy first-order equations saturating the inequalities (20)-(25), except in very 
special cases. Except in these latter cases, one cannot expect to find explicit solutions. 
This is not very unexpected, because the Bogomoln’yi equations saturating the 
inequalities (20)-(25) are matrix-valued equations of various tensor ranks. On the 
other hand, the only functions subjected to the variational principle are the matrix 
valued scalar fields @ of zero tensor rank. It is therefore conceivable that the 
Bogomoln’yi equations are overdetermined. In any case, we have explicitly verified, 
in some examples, that this is so and the Bogomoln’yi equations are solved only by 
the trivial fields @ =0, except in some very special models to be presented below. 

Before proceeding wiih rhe speciai modeis whose minimai acrion soiutions can be 
explictly found, we examine a non-minimal model in detail, by way of illustration. 

For this purpose, we choose the model whose action density is defined by the 
left-hand side of (20’) on R,. The Bogomoln’yi equation is 

[a,@, Jj@] =&,,(SJ,@+J,@S) 

and the topological density is 

p = &Bk tr(v2+@’)J,@J,@dk@ (28) 

which, like all the topological densities featured in the right-hand sides of (20’)-(25’) 
is a total divergence 

p = id,&,* tr[-v2@J,@Jk@ -j~’J,@Jk@+f@2J,@@Jk@]. 

Let now @ be a 2 x 2  Hermitian matrix, whence the most general radial ansatz is 

(28’) 

@ = k ( r ) + f ( r ) i . u .  (29) 

For @ given by (291, the topological charge, which is the volume integral of p in (28), 
is 

=f&[ v 2  - (kk + $fk)I (30) 

up to normalization. Since .fL+ kk= v2 from (2), (30) can be rewritten as 

q = $Pa (50’) 

which is nontrivial provided that fm f 0. 
Therefore solutions with topological charge q and finite action must exist in this 

case. On the other hand these solutions are non-minimal, because it was readily 
verified that substituting the ansatz (29) into the Bogomoln’yi equation (27) yields 
f ( r ) = k ( r ) = O .  
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We now return to the minimal models. These are guaranteed not to be overdetermined 

(31) 

by the fact that their Bogomolniy equations, given below, are of zero tensor rank, 

m= Ei ,... id@ ,,.,., * 
which clearly saturate the topological inequality, 

The Lagrange density of these models, defined on Rdr is 

9 d  = tr @.f,...i, + v. (33) 

Equations (31) defined on R d ,  can be integrated if we choose the matrix valued 
fields @ to be 

@ = i @ T ,  (34) 

where a = 1 , .  . . , d, and r. are the 2d'2 x 2d'2 r-matrices in d dimensions. Here the 
case d = 3 is privileged, because r, = U. actually belong to the algebra of SO(3) and 
SU(2). As such, Lf3 given by (33) is potentially a very useful model for physical 
applications. 

Substituting (34) into (31), and using the fact that the antisymmetrized d-fold 
product of d-dimensional r-matrices is equal to E ' I . ' . ~ ~  times the unit matrix for d odd, 
and to ~ ~ ' " ' ' d  times the chirality matrix r,,, for d even, (31) reduces to 

even d 

where I\J@JJX~I~ is the Jacobian of transformation between xi and Qj. For example, 
in the physically most important example in d = 3 with @ E  su(2), the self-duality 
equation (31) is 

f l= E;,kJi4'l J,c$ bak4CEab, (36) 

according to (34). 
Then choosing n to have the appropriate matrix structure 1 in every odd-dimension 

equation (35a)  reduces to a number valued equation. 
Remembering then that V =  V(7, @"@") in the case (34) at hand, we see that 

V = V ( 7 ,  c$~)  is a function only of the magnitude 4 of the d-component field @'. It 
is therefore natural to decompose W into its polar parametrization. Denoting the 
magnitude of @a by 4, the polar parameters 0,, . . . , 0d--2. and the azimuthal parameter 
by Y, equation (35) can be integrated formally. 

Next we can choose to identify 0. = e,, the (d -2) polar angles of R d ,  and, T= nc$ 
with n=integer and 4 the azimuthal angle of Rd. This amounts to a spherically 
symmetric 'hedgehog' field configuration with Q, = 4 ( r ) .  In that case the integral of 
(35) reduces to 

(37) 
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which can be evaluated once V(?*, 42)  is specified. The result is an explicit minimal- 
action solution with winding number n, provided that we choose the constant of 
integration in (37) to be zero. With this choice of constant, and with a symmetry 
breaking potential V ( 7 ,  @), it can easily be verified that 

- ine behaviour (38j is a necessary condition for the topoiogicai charge given by 
the right-hand side of (32) to exist. For example in the d = 3 case, for the current a,, 
defined by the topological density, to be well defined [ 181. 
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